首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8154篇
  免费   537篇
  国内免费   5篇
  2023年   18篇
  2022年   13篇
  2021年   148篇
  2020年   87篇
  2019年   119篇
  2018年   164篇
  2017年   161篇
  2016年   232篇
  2015年   434篇
  2014年   436篇
  2013年   516篇
  2012年   726篇
  2011年   630篇
  2010年   407篇
  2009年   374篇
  2008年   492篇
  2007年   514篇
  2006年   457篇
  2005年   394篇
  2004年   386篇
  2003年   329篇
  2002年   286篇
  2001年   254篇
  2000年   231篇
  1999年   165篇
  1998年   71篇
  1997年   55篇
  1996年   38篇
  1995年   35篇
  1994年   23篇
  1993年   27篇
  1992年   40篇
  1991年   48篇
  1990年   40篇
  1989年   46篇
  1988年   35篇
  1987年   26篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   18篇
  1981年   10篇
  1979年   12篇
  1978年   14篇
  1977年   11篇
  1975年   7篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8696条查询结果,搜索用时 31 毫秒
991.
BNip3 is a member of Bcl-2 family proteins that displays proapoptotic activity. It contains Bcl-2 homology (BH) 3 and single carboxy terminal membrane-anchoring domain (TM), which targets to specific intracellular organelles, especially to mitochondria. Mitochondria play significant roles in apoptosis by releasing apoptogenic factors through large conductance channel known as permeability transition pore (PTP). Although BNip3 associates with mitochondria when overexpressed, apoptotic pathways including mitochondrial cascade and functional domains of BNip3 are still unknown. In this report, we demonstrate that recombinant BNip3 (rBNip3) induces mitochondrial permeability transition (MPT) and cytochrome c release from isolated mitochondria, which are inhibited by the PT inhibitor cyclosporin A (CsA). We further show that carboxy terminal tail of BNip3, but not BH3, is essential for the induction of PT and cytochrome c release on the base of mutational analysis. Moreover, addition of carboxy terminal c-tail to TM substitution mutant, which did not induce the PT and cytochrome c release, restored PT-inducing activity. Taken together, our results suggest that BNip3 exerts proapoptotic activity through PT induction and that carboxy terminal c-tail is crucial for it.  相似文献   
992.
993.
We reported previously that exogenously added human group V phospholipase A(2) (hVPLA(2)) could elicit leukotriene B(4) (LTB(4)) biosynthesis in human neutrophils (Han, S. K., Kim, K. P., Koduri, R., Bittova, L., Munoz, N. M., Leff, A. R., Wilton, D. C., Gelb, M. H., and Cho, W. (1999) J. Biol. Chem. 274, 11881-11888). To determine the mechanism of the hVPLA(2)-induced LTB(4) biosynthesis in neutrophils, we thoroughly examined the effects of hVPLA(2) and their lipid products on the activity of group IVA cytosolic PLA(2) (cPLA(2)) and LTB(4) biosynthesis under different conditions. As low as 1 nm exogenous hVPLA(2) was able to induce the release of arachidonic acid (AA) and LTB(4). Typically, AA and LTB(4) were released in two phases, which were synchronized with a rise in intracellular calcium concentration ([Ca(2+)](i)) near the perinuclear region and cPLA(2) phosphorylation. A cellular PLA(2) assay showed that hVPLA(2) acted primarily on the outer plasma membrane, liberating fatty acids and lysophosphatidylcholine (lyso-PC), whereas cPLA(2) acted on the perinuclear membrane. Lyso-PC and polyunsaturated fatty acids including AA activated cPLA(2) and 5-lipoxygenase by increasing [Ca(2+)](i) and inducing cPLA(2) phosphorylation, which then led to LTB(4) biosynthesis. The delayed phase was triggered by the binding of secreted LTB(4) to the cell surface LTB(4) receptor, which resulted in a rise in [Ca(2+)](i) and cPLA(2) phosphorylation through the activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2. These results indicate that a main role of exogenous hVPLA(2) in neutrophil activation and LTB(4) biosynthesis is to activate cPLA(2) and 5-lipoxygenase primarily by liberating from the outer plasma membrane lyso-PC that induces [Ca(2+)](i) increase and cPLA(2) phosphorylation and that hVPLA(2)-induced LTB(4) production is augmented by the positive feedback activation of cPLA(2) by LTB(4).  相似文献   
994.
The NAD-dependent histone/protein deacetylase activity of Sir2 (silent information regulator 2) accounts for its diverse biological roles including gene silencing, DNA damage repair, cell cycle regulation, and life span extension. We provide crystallographic evidence that 2'-O-acetyl ADP-ribose is the reaction product that is formed at the active site of Sir2 from the 2.6-A co-crystal structure of 2'-O-acetyl-ADP-ribose and Sir2 from Archaeoglobus fulgidus. In addition, we show that His-116 and Phe-159 play critical roles in the catalysis and substrate recognition. The conserved Ser-24 and Asp-101 contribute to the stability for NAD binding rather than being directly involved in the catalysis. The crystal structures of wild type and mutant derivatives of Sir2, in conjunction with biochemical analyses of the mutants, provide novel insights into the reaction mechanism of Sir2-mediated deacetylation.  相似文献   
995.
Grb7 is the prototype of a family of adaptor molecules that also include Grb10 and Grb14 that share a conserved molecular architecture including Src homology 2 (SH2) and pleckstrin homology (PH) domains. Grb7 has been implicated as a downstream mediator of integrin-FAK signal pathways in the regulation of cell migration, although the molecular mechanisms are still not well understood. In this paper, we investigated the potential role and mechanisms of PH domain in Grb7 in the regulation of cell migration. We found that the PH domain mediated Grb7 binding to phospholipids both in vitro and in intact cells. Furthermore, both Grb7 and its PH domain preferentially interacted with phosphatidylinositol phosphates showing strongest affinity to the D3- and D5-phosphoinositides. The PH domain interaction with phosphoinositides was shown to play a role in the stimulation of cell migration by Grb7. It was also shown to be necessary for Grb7 phosphorylation by FAK, although it was not required for Grb7 interaction with FAK or recruitment to the focal contacts. Last, we found that PI 3-kinase activity played a role in both Grb7 association with phosphoinositides and its stimulation of cell migration. In addition, both FAK binding to PI 3-kinase via its autophosphorylated Tyr(397) and integrin-mediated cell adhesion increased Grb7 association with phosphoinositides. Together, these results identified the Grb7 PH domain interaction with phosphoinositides and suggested a potential mechanism by which several signaling molecules including Grb7, FAK, and PI 3-kinase and their interactions cooperate to mediate signal transduction pathways in integrin-mediated cell migration.  相似文献   
996.
Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo.  相似文献   
997.
998.
Glutaredoxin (Grx) is a 12-kDa thioltransferase that reduces disulfide bonds of other proteins and maintains the redox potential of cells. In addition to its oxidoreductase activity, we report here that a rice Grx (OsGrx) can also function as a GSH-dependent peroxidase. Because of this antioxidant activity, OsGrx protects glutamine synthetase from oxidative damage. Individually replacing the conserved Cys residues in OsGrx with Ser shows that Cys(23), but not Cys(26), is essential for the thioltransferase and GSH-dependent peroxidase activities. Kinetic characterization of OsGrx reveals that the maximal catalytic efficiency (V(max)/K(m)) is obtained with cumene hydroperoxide rather than H(2)O(2) or t-butyl hydroperoxide.  相似文献   
999.
Ferritin is an intracellular protein involved in iron metabolism. A cDNA PwYF-1 cloned from the adult Paragonimus westermani cDNA library encoded a putative polypeptide of 216 amino acids homologous with ferritins of vertebrates and invertebrates. Febinding motifs identified in PwYF-1 polypeptide were conserved and predicted to form a ferroxidase center. PwYF-1 polypeptide contained an extended peptide of 45 amino acids at its C-terminus. Recombinant PwYF-1 protein, expressed and purified from Escherichia coli, showed iron-uptake ability and ferroxidase activity. Ferroxidase activity of recombinant PwYF-1 protein was reactivated by secondary addition of apotransferrin to assay mixture. Mouse immune serum raised against the recombinant PwYF-1 protein recognized specifically 24 kDa protein from adult P. westermani lysate. PwYF-1 protein was localized to vitelline follicles and the eggs of P. westermani. Collectively, PwYF-1 protein was identified as a P. westermani yolk ferritin.  相似文献   
1000.
Organophosphorus hydrolase (OPH) is a bacterial enzyme that has been shown to degrade a wide range of neurotoxic organophosphate nerve agents. However, the effectiveness of degradation varies dramatically, ranging from highly efficient with paraoxon to relatively slow with methyl parathion. Sequential cycles of DNA shuffling and screening were used to fine-tune and enhance the activity of OPH towards poorly degraded substrates. Because of the inaccessibility of these pesticides across the cell membrane, OPH variants were displayed on the surface of Escherichia coli using the truncated ice nucleation protein in order to isolate novel enzymes with truly improved substrate specificities. A solid-phase top agar method based on the detection of the yellow product p-nitrophenol was developed for the rapid prescreening of potential variants with improved hydrolysis of methyl parathion. Two rounds of DNA shuffling and screening were carried out, and several improved variants were isolated. One variant in particular, 22A11, hydrolyzes methyl parathion 25-fold faster than does the wild type. Because of the success that we achieved with directed evolution of OPH for improved hydrolysis of methyl parathion, we believe that we can easily extend this method in creating other OPH variants with improved activity against poorly degraded pesticides such as diazinon and chlorpyrifos and nerve agents such as sarin and soman.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号